

1. Overview

- Existing pass detection methods [1] follow two steps, pass event detection followed by team identification
- This two-step process is complex and irrecoverable to errors
- We propose a dual interacting agent based model for single-step pass detection \bullet
- Possession stat of team $i = \frac{\#Valid \text{ passes by team } i}{\frac{Walid \text{ passes } i}{\frac{Walid \text{ pass } i}{\frac{Walid \text{ pass } i}{\frac{Walid \text{ passes } i}{\frac{Walid \text{ passes } i}{\frac{Walid \text{ passes } i}{\frac{Walid \text{ passes } i}{\frac{Walid \text{ pass } i}{\frac{Walid \text{ pass } i}{\frac{Walid \text{ pass } i}{\frac{Walid \text{ pass } i}{\frac{Walid \text{ passes } i}{\frac{Walid \text$ *#Valid passes by both teams*

3. Flow chart

- 1. Identification agent decides if the temporal window *w* contains a pass
- 2. If no-pass, the localization agent moves and/or rescales w to w'
- 3. If a pass is detected, w is repositioned

Watch and Act: Dual Interacting Agents for **Automatic Generation of Possession Statistics in Soccer** Saikat Sarkar¹, Dipti Prasad Mukherjee², Amlan Chakrabarti¹

¹University of Calcutta, ²Indian Statistical Institute

4. Localization agent

- Task: To localize a pass
- **Actions**: $a_L = \{ left, right, expand, squeeze \}$
- **Reward**:

$$R_L(s, a_L) = \begin{cases} \\ \end{cases}$$
State

5. Identification agent

- **Task**: To identify a valid pass
- **Actions**: $a_I = \{ team A, team B, no pass \}$
- **Reward**: $R_I(s, a_I) =$
 - ____

+1

6. Communication between agents

7. Experimental results

Typical steps of a pass detection

Team label

if $IoU(w, w_a) \ge \tau$ AND $a_I = team(w_a)$ if $IoU(w, w_q) < \tau$ AND $a_I == no-pass,$ otherwise.

Method	Pass dete	ction error (%)	Possessio	Processing	
	team-A	team-B	team-A	team-B	time (sec)
Ours	20.5	16.4	13.3	13.4	0.05 (GPU)
Group	11.8	24.0	11.7	12.5	21.8
Flow	26.7	25.9	15.3	15.4	6.86
Energy	33.0	35.4	18.8	18.9	0.08

[1] Saikat Sarkar, Dipti Prasad Mukherjee, and Amlan Chakrabarti. From soccer video to ball possession statistics. Pattern Recognition, page 108338, 2022.

[2] Ziyu Wang, Tom Schaul, Matteo Hessel, Hado Hasselt, Marc Lanctot, and Nando Freitas. Dueling network architectures for deep reinforcement learning. In International conference on machine learning, pages 1995–2003. PMLR, 2016.

Comparison of error

UCLouvain

sport**radar**

Single Image Ball 3D Annotation

High Quality Ball 3D Evaluation Set

35 ballistic trajectories between 4 and 17 images. Made publicly available here: https://www.kaggle.com/datasets/ gabrielvanzandycke/ballistic-raw-sequences

¹G. Van Zandycke and C. De Vleeschouwer, "Real-time cnn-based segmentation architecture for ball detection in a single view setup," MMSports 2019. ² P. Parisot and C. De Vleeschouwer, "Consensus-based trajectory estimation for ball detection in calibrated cameras systems," Journal of Real-Time Image Processing, 2019. ³G. Van Zandycke, "DeepSport dataset: https://www.kaggle.com/gabrielvanzandycke/deepsport-dataset," 2021.

Ball 3D Localization from a Single Calibrated Image

Gabriel Van Zandycke and Christophe De Vleeschouwer

References

Detection quality improved

OBJECTIVE

Track team sport players from one team during a full game thanks to few human annotations

PROPOSED METHOD

Efficient tracking of team sport players with few game-specific annotations

Adrien Maglo, Astrid Orcesi and Quoc-Cuong Pham

Université Paris-Saclay, CEA, List, F-91120, Palaiseau, France, {firstname.lastname}@cea.fr

CHALLENGES

- Fast movements
- Similar player appearances
- Various poses

- Occlusions
- Multiple entries and exits of the field of view

- 7 rugby Dubaï 2021 Tournament
- 3 sequences of 40 s. at 1080p 50 FPS

TRACKING RESULTS

回道院

Tracking performances increases with the number of annotations

R_{ima} frozen with the iterative association

R_{ima} frozen with the RNMF association

R_{ima} trained with the iterative association

R_{ima} trained with the RNMF association

DETECTION AND IDENTIFICATION RESULTS

Detection and identification performances **better for big player** bounding boxes

CONCLUSION

- New semi-automatic team sport player tracking method
- New rugby tracking dataset

ti [He20	0 20]	
	\mathbf{S}_{1M}	٦
۰.	÷	

Publicly released at <u>https://kalisteo.cea.fr/index.php/free-resources/</u>

R_{\cdot}	00000	Det.	Team class.	Id. class.	Total	
n_{img}	assoc.	recall	recall	recall	recall	
All detected bounding boxes						
frozen	iter.		58.4±2.1	73.8±4.5	32.7±2.4	
frozen	RNMF	758	74.6 ± 2.5	60.9±6.5	34.5±4.6	
trained	iter.	/5.0	75.9 ± 3.9	84.0±3.4	48.3±3.0	
trained	RNMF		89.1±2.0	79.4±2.6	53.6±1.8	
Big dete	cted boundi	ng boxes	(area superior t	o 25214 pixel	s)	
frozen	iter.		60.8 ± 2.2	77.3±6.8	42.1±3.1	
frozen	RNMF	807	72.3 ± 2.2	66.4 ± 5.0	43.1±4.4	
trained	iter.	09.7	76.2 ± 3.5	87.4±5.2	59.7±4.2	
trained	RNMF]	90.8±0.9	83.5±3.4	67.9±2.6	
France Kenva – French team – 32 frames – 6 annotations / plaver						

[[]Bewley2016] Alex Bewley, Zongyuan Ge, Lionel Ott, Fabio Ramos, and Ben Upcroft. Simple online and realtime tracking. In IEEE International Conference on Image Processing, pages 3464–3468. IEEE, 2016.

[[]Ding2008] Chris HQ Ding, Tao Li, and Michael I Jordan. Convex and semi-nonnegative matrix factorizations. IEEE Transactions on Pattern Analysis and Machine Intelligence, 32(1):45–55, 2008.

[[]He2016] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In IEEE Conference on Computer Vision and Pattern Recognition, pages 770–778, 2016

[[]He2020] Yuhang He, Xing Wei, Xiaopeng Hong, Weiwei Shi, and Yihong Gong. Multi-target multi-camera tracking by tracklet-to-target assignment. IEEE Transactions on Image Processing, 29:5191–5205, 2020.

[[]Ren2015] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: Towards real-time object detection with region proposal networks. Advances in Neural Information Processing Systems, 28:91–99, 2015.

[[]Vaswani2017] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in Neural Information Processing Systems, 30, 2017.

End-to-End High-Risk Tackle Detection System for Rugby

Naoki Nonaka¹, Ryo Fujihira¹, Monami Nishio¹, Hidetaka Murakami², Takuya Tajima³, Mutsuo Yamada⁴, Akira Maeda^{5,6} and Jun Seita¹

¹Advanced Data Science Project, RIKEN Information R&D and Strategy Headquarters ² Murakami Surgical Hospital ³ Faculty of Medicine, University of Miyazaki ⁴ Faculty of Health and Sport Sciences, Ryutsu Keizai University ⁵ Hakata Knee & Sports Clinic ⁶ Faculty of Human Health, Kurume University

Background

- Concussion raises the risk of harmful aftereffect and is the most common injury in Rugby Union [1].
- World Rugby introduced Head Injury Assessment (HIA) protocol to identify suspected concussion.
- HIA is conducted by human professional, thus affordable only for elite league.

Develop a high-risk tackle detection system without human intervention

Consists of 4 models (frame selection, tackle detection, pose estimation, tackle risk classification).

Takes 5 sequential frames and return risk of tackle, when tackle is in given frame.

Evaluation metric for high-risk tackle detection system. For each frame in video, we give score shown on right table and subsequently, sum up per frame score and normalize obtained scores.

Trained and tested with TV broadcasted match video of Japanese elite league.

- Combination of 3 frame selection,

Frame selection model	Tackle detection model	Pose estimation model	Score	Recall
	PatinaNat	HRNet	0.3449	0.583
Human labola	Kelmanel	CenterTrack	0.4905	0.833
Human labels	DETD	HRNet	0.2249	0.417
	DEIK	CenterTrack	0.5397	0.917
	DatinaNat	HRNet	0.2312	0.583
No solation	Ketmanet	CenterTrack	0.2759	1.000
No selection	DETD	HRNet	0.2204	0.583
	DEIK	CenterTrack	0.2224	1.000
ResNet Mixed Convolution	DatinaNat	HRNet	0.1837	0.333
	Kelmanel	CenterTrack	0.0793	0.167
	DETD	HRNet	0.1825	0.333
	DEIK	CenterTrack	0.1680	0.333
	PotinoNot	HRNet	0.0840	0.167
PosNat 2+1D	Ketmanet	CenterTrack	0.2807	0.500
Keshel 2+1D	DETD	HRNet	0.000	0.000
	DLIK	CenterTrack	0.2719	0.500
	DatinaNat	HRNet	0.0867	0.167
DecNet 2D	Ketmanet	CenterTrack	0.0400	0.083
Resider 5D	DETD	HRNet	0.0866	0.167
	DEIK	CenterTrack	0.0820	0.167

2 tackle detection and 2 pose estimation models were tested.

Combination of ResNet2+1D, RetinaNet and CenterTrack performed best.

Discussion/Conclusion

- Developed end-to-end high-risk tackle detection system.
- System could detect 50% of high-risk tackles.

Further room for improvement, especially in tackle frame selection.

[1]: CW Fuller, Aileen Taylor, Marc Douglas, and Martin Raftery. Rugby world cup 2019 injury surveillance study. South African Journal of Sports Medicine, 32(1), 2020.

Ice hockey player identification via transformers and weakly supervised learning Kanav Vats, William McNally, Pascale Walters, David A. Clausi and John S. Zelek

Problem statement

Identify jersey number (JN) from player tracklet.

Motivation

1. Previous works [1,2] sample a fixed number of frames from anywhere in a tracklet, with no knowledge of JN presence.

Sampled frames have no JN visible, but GT=12

- 2. Only a subset of roster player on the rink; use of play-by-play data can help boost identification accuracy
- 3.Use recent vision based transformer networks for player identification

Contributions

- Incorporate player shift times into the inference using OCR, increasing accuracy by 6%.
- Transformer based network outperforming the previous benchmark on the dataset[1]
- Weakly-supervised training strategy achieving faster 3. network convergence

References:

- [1] Vats et al. Arxiv preprint 2110.03090
- [2] Chan et al. Expert Sytstems with Application, 2021
- [3] Vats et al. ACM MMSports 2021
- [4] Kendall et al. CVPR 2018

Network

Input: *m* frames sampled from a tracklet.

Output: Jersey number probability of first, second digits and overall holistic number.

Loss: Multi-task cross-entropy loss[3] with learned weights[4].

Weakly supervised training

- Generate weak/approximate labels for jersey number presence using a network trained to infer jersey number from static images.
- 2. Train the transformer network by sampling tracklet frames where jersey number is visible.

Incorporating player shifts

Given a player shifts database, **STEP1**: Use an OCR to read game time

STEP2: Use game times to extract players present on ice during a game clip from the database

STEP3: Create *shift vectors* encoding shift information from STEP2 and multiply with final logits.

al.[2]

Video number	Ours w/ shift data	Ours w/ roster data	Ours w/o s
1	90.70%	95.35%	90
2	91.43%	85.71%	74
3	87.72%	87.72%	8
4	80.00%	76.0%	72
5	83.33%	83.33%	81
6	90.00%	90.0%	90
7	85.07%	80.60%	73
8	93.75%	93.75%	9
9	94.45%	93.18%	8
10	93.02%	88.37%	83
11	82.22%	80.00%	71
12	84.85%	84.85%	84
13	86.11%	83.33%	80
Mean	87.97%	86.32%	82

Incorporating shifts leads of a performance increase of almost 6%

2.02%

Interaction Classification with Key Actor Detection in Multi-Person Sports Videos Farzaneh Askari¹, Rohit Ramaprasad², James J. Clark¹, Martin D. Levine¹ ¹McGill University, Montreal, QC, Canada, ²Birla Institute of Technology and Science, Pilani, Rajasthan, India

Motivation:

- Human actions and their interactions with each other and their environment plays a significant role in video understanding, especially sports analysis.
- Sports broadcast scenes are often crowded. Some of the actors participate in the main event (i.e., key actors), and the rest are present in the scene without being part of the actual event.
- Ice hockey broadcast videos include complex scenes due to frequent occlusions, camera viewpoints, camera motion
- Penalties are complicated human interactions during a sports game that significantly affect the dynamics and directions of the game.

Contribution:

We propose a CNN-RNN based model equipped with an attention mechanism that recognizes penalties from ice hockey broadcast videos while isolating the players involved in the event.

Dataset:

- Multi person penalty videos with pose and hockey stick annotations
- □ Classes: Tripping (80), Slashing(76), No penalty (98)

An example of tripping class with pose and stick annotation

Attention mechanism

Softmax

$$\mathbf{M}_f(h_{t-1}^f, h_{t+1}^f, f_t)$$
(1)

$$\mathbf{I}_c(h_{t-1}^c, h_t^f, pa_t) \tag{2}$$

$$\mathbf{x}\left(MLP([p_{ti}, h_t^f, h_{t-1}^c])\right)p_{ti} \quad (3)$$

$$\sum_{k=1}^{K} y_{T_i}^c \log y_{T_i}^c \tag{4}$$

Results:

N	Model							
-								

Model1: only frames Model2: only pose (A Model3: frames and

Table 1. Penalty classification accuracy

Model

Model2: only pose (Att Model2 wo stick: only Model3: frames and po Model3 wo stick: frame

Table 2. The effect of stick keypoints on penalty classification

	Accuracy (%)
s (no Att)	87.43
Att)	80.66
pose fusion (Att)	93.93

	Accuracy (%)
t)	80.66
pose (Att)	74.86
ose fusion (Att)	93.93
es and pose fusion (Att)	90.46

Tokyo Institute of Technology

Introduction

Our goal: to create a prediction model that can be used for some analyses or applications.

For that goal, we combine geometric (left) and visual (right) information to improve prediction accuracy.

Alignment Process

Key technologies.

1. Using detected points by YOLO as well as trajectories.

Trajectories

: Tracked positions of 20 players cannot be projected precisely.

Detection points

: Accurate positions of each player but include errors such as,

- 1. <u>Miss detections</u>. 2. <u>Unnecessary detections</u>.
- 2. Correction of YOLO errors using <u>ICP</u> + <u>Hungarian Alg.</u>
 - **1. ICP between trajectory and detections.** Miss detected players may be identified. We call them pseudo detection points.

2. Hungarian matching to filter points.

Red points w/o circle : Pseudo detection points Blue points w/o circle : Unnecessary detection points

3. CPD was used for final alignment. We obtained only 20 players tracked positions in image coordinates system.

Pass Receiver Prediction in Soccer using Video and Players' Trajectories

Yutaro Honda 1 Rei Kawakami 2 Ryota Yoshihashi 2 Kenta Kato 3 Takeshi Naemura 1 1 The University of Tokyo 2 Tokyo Institute of Technology 3 Data Stadium Inc.

Method

Combining three basic methods: 3DCNN, LSTM, Transformer

- Input: Players' video frames & trajectories, ball trajectory (as context info)
- *Output*: <u>Possibilities</u> for receiving a next pass of each player.

The cropped player video is used for two reasons: 1. To use the trajectory and the video simultaneously. 2. To prevent loss of visual information.

Each Playe Trajector Encoder **Ball Trajectory** Trajectory 21 tokens 20 plavers + Ball Ball movement is considered as a unique context information.

> The transformer takes into account the interaction between players through an attention mechanism

Experiment

Predicting a receiver out of 9 teammates (excluded goad keeper).

- Rule based: Treating the closest teammate as the receiver.
- CNN: Simple CNN that considers the players' position just before the pass.

	Top-1	Тор-З	Top-5
Rule based	30.84	68.13	82.82
CNN	38.84	77.78	91.31
Our (trajectory)	48.48	84.27	94.80
Ours (trajectory + RGB)	61.10	91.52	97.47

The cropped images. \rightarrow The movement of the body. The trajectories. \rightarrow The spatial movement on the field.

Possible Application Detecting key timing from probability change.

The change of players' decision appeared as probability change. What happens in these scenes?

Searching high-level pass scenes as prediction errors.

Many of prediction errors are as follows: *headings, side changes, long passes*, and plays where even the kicker does not have full control of the ball. Some errors are high-level pass scenes: it deceives our prediction model.

Conclusion

(Orange stars indicate sender)

High-skilled through pass.

Considering visual information directly improved the prediction accuracy. \succ We developed a pipeline that aligns player trajectories and video frames. \succ We presented possible applications using our prediction model.

RECOGNITION OF FREELY SELECTED KEYPOINTS ON HUMAN LIMBS

INTRODUCTION

- Video analysis is popular for performance evaluation and improvement of athletes' capabilities based on the results of the analysis
- For individual sports, the location of keypoints is of main interest their detection can be automated by human pose estimation models
- Annotations are expensive, only necessary keypoints for the specific task are annotated
- More keypoints open possibilities for new and/or extended types of analyses, but are too time consuming to annotate
- Our approach introduces a method to estimate arbitrary keypoints on human limbs without any additional keypoint annotations

KEYPOINT GENERATION

Random keypoints are generated using segmentation masks, the masks can be created using detectron2 [1] if the dataset does not contain any:

- 1. A point b_p (green) is randomly sampled on the line (= projection line) between two fixed keypoints b_i , b_j (yellow) enclosing a body part.
- 2. A line orthogonal to the projection line is created and the boundary points c_1, c_2 (blue) of the body part are determined as the intersection of that line and the boundary of the segmentation mask.
- 3. The random point b_t (red) is generated by randomly sampling a point on the line segment between the boundary points, while points on both sides are equally probable.

KEYPOINT REPRESENTATION

1. Representation as Keypoint and Thickness Vectors

• Let n be the number of keypoints in a dataset and p_b denote the distance from b_p to b_i divided by the distance from b_i to b_j (= percentage of the projection line). Then the keypoint vector $v^k \in \mathbb{R}^n$ is designed as

$$v_{l}^{k} = \begin{cases} 1 - p_{b}, & l = i \\ p_{b}, & l = j \\ 0, & l \neq i \land l \neq j \end{cases} \quad l = 1, ..., n$$

• Let c denote the intersection point that is closer to b_t . Let p_t be the distance from b_t to c divided by the distance from b_p to c (= percentage of thickness). Then, the thickness vector $v^t \in \mathbb{R}^3$ is designed as

$$v^{t} = \begin{cases} (p_{t}, 1 - p_{t}, 0)^{T}, & b_{t} \text{ closer to } c_{1} \\ (0, 1 - p_{t}, p_{t})^{T}, & b_{t} \text{ closer to } c_{2} \end{cases}$$

2. Representation as Norm Pose Point

• All keypoints are represented in normalized x- and y-coordinates of the following norm pose:

- Basis: TokenPose-Base [2] with an HRNet-w32 [3] as a feature extractor
- transformation just like feature patches and visual tokens
- Norm pose coordinates are transformed to keypoint tokens via a multi layer perceptron

THICKNESS METRICS

- The ground truth thickness

Keypoint and thickness vectors are transformed to keypoint tokens via a linear

• Problem: Models predicting only the projection points b_p instead of b_t achieve high PCK and OKS scores, although the model does not learn the semantic of the body part shapes — new metrics are necessary

• Let b_t^0 be the desired ground truth keypoint, b_p^0 the corresponding projection point, c_1^0 the intersection point on the other side of b_n^0 and c_2^0 the intersection point on the same side, w.l.o.g. (see figure)

ss is
$$t_0 = \frac{||b_t^0 - b_p^0||_2}{||c_2^0 - b_p^0||_2}$$

- (PCT), defined analogous to PCK

- Triple and long jump dataset:

Model

TokenPose

Keypoint & Thickness Vectors

Norm Pose Linear

Norm Pose **4-Layer MLP**

References

[1] Iasonas Kokkinos, Rıza Alp Güler, Natalia Neverova. Densepose: Dense human pose estimation in the wild. 2018. [2] Yanjie Li, Shoukui Zhang, Zhicheng Wang, Sen Yang, Wankou Yang, Shu-Tao Xia, and Erjin Zhou. Tokenpose: Learning keypoint tokens for human pose estimation. arXiv preprint arXiv:2104.03516, 2021. [3] Jingdong Wang, Ke Sun, Tianheng Cheng, Borui Jiang, Chaorui Deng, Yang Zhao, Dong Liu, Yadong Mu, Mingkui Tan, Xinggang Wang, et al. Deep high-resolution representation learning for visual recognition. IEEE transactions on pattern analysis and machine intelligence, 2020. [4] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr Dolla'r, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In ECCV, pages 740–755. Springer, 2014.

• If the model predicts a point b_t^2 on the same side of the projection line as b_t^0 , the predicted thickness is $t_2 = \frac{||b_t^2 - b_p^2||_2}{||c_2^2 - b_p^2||_2}$ and the **thickness error** $e_2 = |t_0 - t_2|$

• For points b_t^1 on the opposite side, the thickness error is $e_1 = \frac{||b_t^1 - b_p^1||_2}{||c_1^1 - b_p^1||_2} + t_0$

• Used metrics: Mean Thickness Error (MTE) and Percentage of Correct Thickness

EXPERIMENTS

• DensePose [1] split of COCO [4] dataset:

- 39,210 persons for training, 2,243 for validation and 7,297 for testing - 17 keypoints - Correction of ~3,500 segmentation masks (left-right errors, published on our website)

- 4,101 images for training, 464 for validation and 1,461 for testing - 20 keypoints - Segmentation masks from detectron2 [1], no need for manual annotations

	DensePose - COCO					Trip	ole & Lo	ong Ju	mp
	AP	Avg PCK	Full PCK	MTE	РСТ	Avg PCK	Full PCK	MTE	РСТ
	84.6	84.1				91.3			
6	84.0	84.2	87.2	25.5	68.1	90.9	93.6	16.2	81.4
	78.5	80.5	83.1	33.0	56.4	90.3	93.5	17.0	79.0
	83.1	83.7	87.1	25.7	66.9	90.9	93.6	16.8	79.8

Abstract

- We propose a novel semi-supervised learning method for leveraging unlabeled data by generating pseudo labels with a teacher-student approach.
- We introduce three loss parametrizations to introduce doubt in the pseudo labels based on their confidence scores.

Motivations

- It is expensive in time or money to annotate large amounts of data.
- Unlabeled data are collected but often left unused.
- Let's use them to improve our models!

Methodology

- Step 1: Training the teacher: We train a teacher model with the labeled data in a supervised way.
- Step 2: Generating pseudo labels: We use the trained teacher to generate pseudo labels on the unlabeled data.
- Step 3: Training the student: We train a student model with the labeled and pseudo-labeled data. We introduce doubt for unsure predictions of the teacher by parametrizing the loss and we fine-tune the student model with the labeled data.
- Step 4: Iterating with a new teacher: The fine-tuned student becomes the new teacher and it is used to generate new pseudo labels.

Semi-Supervised Training to Improve Player and Ball Detection in Soccer

* these authors contributed equally.

Unlabeled dataset

Loss parametrizations

Renaud Vandeghen*, Anthony Cioppa*, Marc Van Droogenbroeck

Supervised training + fine-tuning Loss parametrization Student Evaluation Supervised training Iterative update

Pseudo-labeled dataset

Experimental Results

Quantitative results

						N	<u>letric: mAP</u>
Method	l	h	1%	Valida 5%	tion set 10%	100%	Test set 100%
Teacher	-	_	18.1	31.9	39.5	52.7	51.0
Param. 1	-	0.99	25.8^\dagger	38.6	44.3	53.7	
Param. 2	0.9	0.99	26.0	38.7	44.3	53.8	_
Param. 3	0.9	1	26.2	38.9	43.7	53.8	52.3

Effect of fine-tuning

				Metric: mAP
Method	1%	5%	10%	100%
Teacher	18.1	31.9	39.5	52.7
Param. 1	$22.6^{\dagger} \rightarrow 25.8$	$36.0 \rightarrow 38.6$	$42.3 \rightarrow 44.3$	$52.6 \rightarrow 53.7$
Param. 2	$23.1 \rightarrow 26.1$	$36.6 \rightarrow 38.7$	$43.0 \rightarrow 44.3$	$52.6 \rightarrow 53.8$
Param. 3	$23.0 \rightarrow 26.2$	$36.1 \rightarrow 38.9$	$41.9 \rightarrow 43.7$	$52.7 \rightarrow 53.8$

Qualitative results

Single separation

between the objects and the background

Doubt for unsure

predictions of the teacher

Progressive

doubt for unsure predictions of the teacher

Loss parametrization 3

Confidence score

• All parametrizations improve the performance. • Param. 3 leads to the best performance.

• Fine-tuning on the labeled data further improves the performances for each parametrization.

X Broadcast videos do not show the entire pitch

X No large public dataset for tracking with a full pitch view

Dataset Overview

Participants

- College-level athletes
- University of Tsukuba, Japan
- ✓ Ethics committee approved

Semi-Automatic

- 1. Collect video and GNSS data
- 2. Perform object detection on video
- 3. Project bounding boxes and GNSS points to pitch coordinates via homography transform.
- 4. Assign IDs to bounding boxes w/ bipartite matching

	Wide-view camera	Top-view camera	GN	
Device	Z CAM E2-F8	DJI Mavic 3	STATSPORTS	
Resolution	8 K	4 K	Abs. err. in	
	$(7,680 \times 4,320 \text{ pixels})$	$(3,840 \times 2,160 \text{ pixels})$	0.22 ± 0.2	
FPS	30	30	10	
Player tracking	✓	✓	1	
Ball tracking	✓	✓	X	
Bounding box	✓	✓	_	
Location data	✓	✓	1	
Player ID	✓	✓	1	

The device used for GNSS data collection

SoccerTrack Algorithm

Annotation Accurac

Top-view Camera

KP Projection Error

Discrepancy w/ GNSS

Wide-view Camera

KP Projection Error

Discrepancy w/ Top-view

Extra Details							
Comparison with other Tracking Datasets							
Dataset	Camera	Wide-view	Top-view	GNSS/LPS	Location data	Bounding box	Tracking code
D'Orazio et al. [11]	 ✓ 	×	×	×	✓	X	×
Pettersen et al. [32]		Panorama	×	LPS	1	×	×
Pappalardo et al. [31]	×	×	×	×	1	×	×
GFootball [23]	1				1	×	×
SoccerNet v1 [14]	1	×	×	×	×	×	×
SoccerNet v2 [9]		×	×	×	\checkmark	\checkmark	\checkmark
SoccerTrack (ours)	1	Fish-eye	Drone	GNSS	\checkmark	\checkmark	\checkmark

	Public Release So
Date	Content
06/20	10 minutes of top (30 secs x 20 clips
08/01	20 minutes of top (30 secs x 40 clips
09/01	30 minutes of top (30 secs x 60 clips

Find our webpage at <u>https://github.com/AtomScott/SoccerTrack</u> ...Or just google "SoccerTrack"!

Results						
[mean ± std]	Tracking Performance (Ave.)					
	<u>Top-view Camera</u>					
0.06 ± 0.03 m	MOTA Score	50.5%				
2.76 ± 2.86 m	ID Switches	5				
	<u>Wide-view Camera</u>					
0.56 ± 0.42 m	MOTA Score	14.2%				
v 2.77 ± 4.47 m	ID Switches	19				

Conclusion

Both top and wide camera views can be used for tracking > Annotation evaluations showed reasonable accuracy > The tracking algorithm can be improved

Introduction

Background

Sports Field Registration is to estimate homography transformation using fieldfeatures between 2D field model and image. A wide variety of sports applications requires a robust sports field registration such as virtual advertising and true-view replay.

Motivation

Real-world field images usually present a uniform and textureless appearance, extracting sparse field-features due to camera zoom-in or occlusions caused by the players. Those cases make the homography estimation a non-trivial and challenging task. Inspired by keypoints detection method, which may suffer the missing and misalignment problems due to uniform appearance, we use similar idea to tackle this problem differently. Below is missing and misalignment case between the state-of-the-art method and ours.

Contributions

- We combine instance segmentation with dynamic filter learning to detect a grid of uniformly distributed keypoints over the entire field image.
- We introduce a new soccer dataset, called TS-WorldCup, with detailed field markings on 3812 time-sequence field images.

Sports Field Registration via Keypoints-aware Label Condition

Jheng-Wei Su¹ Kai-Wen Hsiao¹ Chi-Yu Lien¹ Shu-Ho Fan¹ Min-Chun Hu¹ Ruen-Rone Lee² Chih-Yuan Yao³ Hung-Kuo Chu¹ ¹National Tsing Hua University ²Delta Research Center ³National Taiwan University of Science and Technology

Model Architecture

Standard Encoder-decoder

We adopt a encoder-decoder structure to extract the feature map of input field image.

Keypoints-aware Label Condition

Dynamic Filter Generation

assigned keypoints.

Dynamic Head

Leverage three convolution layers based on learned convolution filters and employ soft aggregation for merging heatmaps to get the final result.

Loss functions

We adopt three loss functions to train our model.

Binary Dice Loss

It is proven helpful for addressing the data imbalance problem between foreground and background.

- Binary Cross Entropy Loss It is commonly used in the binary classification problems.
- Weighted Cross Entropy Loss It tackles the data imbalance problem by assigning weight to each class.

Evaluation

TS-WorldCup Dataset

We create a new soccer dataset with detailed field markings on 3812 field images from 43 videos of Soccer World Cup 2014 and 2018. It is beneficial for temporal evaluation due to contains time-sequence frames.

Quantitative Results

Our method outperforms state-of-the-arts on our collected TS-WorldCup dataset. The symbol * denotes the methods that are finetuned on the TS-WorldCup training set.

Method	IOU _{whole} (%) ↑		IOU _{part} (%) 1		Proj. (meter)↓		Re – Proj.↓	
	mean	median	mean	median	mean	median	mean	median
Chen et al.	89.0	92.2	96.8	97.6	0.65	0.47	0.020	0.017
Nie et al.	90.1	92.8	96.6	97.4	0.57	0.51	0.015	0.012
Ours	93.2	94.3	97.6	97.7	0.45	0.41	0.012	0.011
Chen et al. *	90.7	94.1	96.8	97.4	0.54	0.38	0.016	0.013
Nie et al. *	92.5	94.2	97.4	97.8	0.43	0.38	0.011	0.010
Ours *	94.8	95.4	98.1	98.2	0.36	0.33	0.009	0.008

- Conclusion
- sequence field-frames.

We estimate a robust homography based on a grid of uniformly distributed keypoints and instance segmentation with dynamic filter learning. We compile a new soccer dataset, called TS-WorldCup, by annotating time-