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1. Overview

« Existing pass detection methods [1] follow two steps, pass event detection
followed by team identification

« This two-step process is complex and irrecoverable to errors
 We propose a dual interacting agent based model for single-step pass detection

#Valid passes by team i

e Possession stat of team i =
f #Valid passes by both teams

Pass event
detection

Team
identification

Existing approac

Identification
Agent
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Agent

Dual interacting agents

[ Valid pass for team A ]

[ Valid pass for team A ]

Proposed approach

2. Proposed method
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3. Flow chart
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Identification Agent
(team A, team B, no-pass)

Yes
Pass detected?

No

1. Identification agent decides Iif the
temporal window w contains a pass

2. If no-pass, the localization agent
moves and/or rescales w to w'

3. If a pass is detected, w is repositioned

Observation

Continue

Localization Agent
(left, right, expand, squeeze)

Watch and Act: Dual Interacting Agents for
Automatic Generation of Possession Statistics In Soccer
Saikat Sarkar!, Dipti Prasad Mukherjee?, Amlan Chakrabarti'

'University of Calcutta, ?Indian Statistical Institute

4. Localization agent

Ground truth window

%reshold

+1  ifloU(w', w,) > T,

- Task: To localize a pass

. Actions: a; = { left,right, expand, squeeze}

= g Rp(s.az) = +0.1 else it
eward. L/, L) = (D(w,wgy) — D(w',wy)) >0
ot —1 otherwise.
ate

Boundary distance

5. ldentification agent

. Task: To identify a valid pass
Team label

. Actions: a; = {team — A,team — B,no — pass}
)

+1 if IoU(w,wy)/> 7 AND
ar == team(w,),
. Reward: Rr(s,ar) = +0 ifloU(w,w,) <7 AND
a7 == no-pass,

—1 otherwise.
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/. Experimental results

Typical steps of a pass
detection

Method |Pass detection error (%) |Possession stat error (%) | Processing
team-A team-B team-A team-B time (sec)
Ours 20.5 16.4 13.3 13.4 0.05 (GPU) Comparison of
Group | 11.8 24.0 11.7 12.5 21.8
Flow | 267 25.9 15.3 154 6.86 crror
Energy | 33.0 35.4 18.8 18.9 0.08
1
] T A 1
Ground truth e
Comparison
Our method (T T
of pass
| I I I —
detection Group
Flow ([ [
Energy (I [T
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. UCLouvain Ball 3D Localization from a Single Calibrated Image
Sp@r‘tr‘adar‘ Gabriel Van Zandycke and Christophe De Vleeschouwer

Baseline (BallSeg + HCT)

Single Image Ball 3D Annotation Single image Output position Localization results

1 nput S e Canny Edge Hough Circle and diameter

Tt Detector ~ Transform

(BallSeg) MAE[px) MAE[m] MAE[%]

Projection approach Diameter approach

Base/ine\
BallSeg! + HCTY 4.6+.5 5.1+.5 24+4
Proposed method \

Proposed method (BallSeg + CNN)

(" Ball candidates detection \/Ball size estimation and ball presence refinement ) BaIISegl CNN*®*16+.2 1.8+.2 10x.7
3 Regression % i ®
% output P : ' .;.‘ Oracle + CNN 1.5+.1 1.7+.1 10=%.5

Ball detection
model

Our high-quality evaluation setw

VGG16 ich Quali
L - High Qualit
Binary & APIDIS gBaII 3D y DeepSport

classification
output oS

(BallSeg)

dataset? Evaluation Set

- / . .
S X
camera

absolute projection error [m] diameter error [px]

Given:
e K: camera intrinsic matrix
® R: camera rotation matrix
ey ® R: lens distortion rectification
e (“: ball diameter in world
BallSeg-topl BallSeg-topl

- BallSeg-topk + CNN Bl BallSeg-topk + CNN

coordinates system origin

6.
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— OBIJECTIVE

Track team sport players from one team during a
full game thanks to few human annotations

Adrien Maglo, Astrid Orcesi and Quoc-Cuong Pham

Université Paris-Saclay, CEA, List, F-91120, Palaiseau, France,{firstname.lastname}@cea.fr

CHALLENGES

Fast movements

e Various poses

e Occlusions

o Similar player appearances « Multiple entries and
exits of the field of view

— NEW TRACKING RUGBY DATASET

EfimE o 7 rugby Dubai 2021 Tournament
?_;%ﬁ « 3 sequences of 40 s. at 1080p 50 FPS
Elr=r  , Publicly released at https://kalisteo.cea.fr/index.php/free-resources/

Efficient tracking of team sport players with few game-specific annotations
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— PROPOSED METHOD

- Kalman filter
- Bipartite matching
- Hungarian algorithm

[

| X = Single IOU criteria

[Bewley2016]
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— TRACKING RESULTS

Tracking performances increases
with the number of annotations

R.mg frozen with the iterative association

Im

R. . trained with the RNMF association

Im

R. . trained with the iterative association
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Detection and identification

bounding boxes

~ DETECTION AND IDENTIFICATION RESULTS

performances better for big player e

Det. Team class. Id. class. Total

FRimyg a550¢. recall recall recall recall
All detected bounding boxes
frozen iter. 58.4+2.1 73.8+4.5 32.7+2.4
frozen | RNMF 758 74.61+2.5 60.9+6.5 34.5+4.6

1ter. ' 75.9+3.9 84.0+3.4 48.343.0

RNMF 89.1+2.0 | 79.4+2.6 [[[53.6+1.8]]

Big detected bounding boxes (area superior to 25214 pixels)
frozen iter. 60.8+2.2 77.3+6.8 42.14+3.1
frozen | RNMF 207 72.31+2.2 66.445.0 43.1+4.4
trained iter. ' 76.2+3.5 87.4+5.2 59.74+4.2
trained | RNMF 90.8+0.9 83.5+3.4 67.9+2.6

France Kenya — French team — 32 frames — 6 annotations / player

— CONCLUSION

o« New semi-automatic team sport
player tracking method
o New rugby tracking dataset
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End-to-End High-Risk Tackle Detection System for Rugby

Naoki Nonaka!, Ryo Fujihirat, Monami Nishio?, Hidetaka Murakami?, Takuya Tajima3,

Mutsuo Yamada?, Akira Maeda>® and Jun Seital

LAdvanced Data Science Project, RIKEN Information R&D and Strategy Headquarters
3 Faculty of Medicine, University of Miyazaki
> Hakata Knee & Sports Clinic

> Murakami Surgical Hospital
4 Faculty of Health and Sport Sciences, Ryutsu Keizai University
% Faculty of Human Health, Kurume University

Background

B Concussion raises the risk of harmful aftereffect and Is the most common injury in Rugby Union [11.
B World Rugby introduced Head Injury Assessment (HIA) protocol to identify suspected concussion.
B HIA Is conducted by human professional, thus affordable only for elite league.

v

Develop a high-risk tackle detection system without human intervention

4. Tackle risk

]. Tackle frame 2. Tackle detection 3. Pose estimation

selection classification
: res, > High-risk
- No Low-risk

Input frames
(Target frame + 4 previous frames)

>%: high-risk tackle: tackle led to HIA in official record

B Consists of 4 models (frame selection, tackle detection, pose estimation, tackle risk classification).
B Takes 5 sequential frames and return risk of tackle, when tackle Is in given frame.

Re S u I t Frame selection model Tackle detection model Pose estimation model Score Recall
. . HRNet 0.3449  (.583
Ground Prediction b S Qenteriack 04905 0.833
Truth HRNet 0.2249 0.417
True False DI CenterTrack 0.5397 0.917
True +1 -1 . HRNet 0.2312  0.583
o N lect EENE: CenterTrack 0.2759 1.000
False -0.1 0 0 selection SETR HRNet 02204  0.583
rame g CenterTrack 0.2224  1.000
_ _ _ _ _ R HRNet 0.1837 0.333
Evaluation metric for high-risk tackle detection system. . . CenterTrack 0.0793  0.167
] . . _ ResNet Mixed Convolution HRN 0.1825 0.333
For each frame In video, we give score shown on right table and DETR et : :
subsequently, sum up per frame score and normalize obtained scores Centerlrack 0.1680  0.333
. Ys PP ' R HRNet 0.0840 0.167
ResNet 241D CenterTrack 0.2807  0.500
- . e HRNet 0.000  0.000
B Trained and tested with TV broadcasted
T HRNet 0.0867 0.167
h - f I - I ResNet 3D CenterTrack 0.0400 0.083
match video of Japanese elite league. HRNer | 00866 0.167
CenterTrack 0.0820 0.167

B Combination of 3 frame selection,

2 tackle detection and 2 pose estimation models were tested.
B Combination of ResNet2+1D, RetinaNet and CenterTrack performed best.

Discussion/Conclusion

B Developed end-to-end high-risk tackle detection system.

B System could detect 50% of high-risk tackles.

B Further room for iImprovement, especially in tackle frame selection.

[1]: CW Fuller, Aileen Taylor, Marc Douglas, and Martin Raftery. Rugby world cup 2019 injury surveillance study. South African Journal of Sports Medicine, 32(1), 2020.
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Problem statement
ldentify jersey number (JN) from player tracklet.

vip.uwaterloo.ca

Infer jersey number
using all frames

Motivation

1. Previous works [1,2] sample a fixed number of frames from anywhere in
a tracklet, with no knowledge of JN presence.

Ground truth: 12

P
|

.

-/, =9
Sampled frames have no JN visible, but GT=12

2. Only a subset of roster player on the rink;
use of play-by-play data can help boost identification accuracy

3.Use recent vision based transformer networks for player identification
Contributions

1. Incorporate player shift times into the inference using OCR,
Increasing accuracy by 6%.

2. Transformer based network outperforming the previous
benchmark on the dataset[1]

3. Weakly-supervised training strategy achieving faster

network convergence

References:

[1] Vats et al. Arxiv preprint 2110.03090

[2] Chan et al. Expert Sytstems with Application, 2021
[3] Vats et al. ACM MMSports 2021

[4] Kendall et al. CVPR 2018

Network
Iiio 15;1 plz
MLP MLP MLP
head head head

Transformer Encoder

CNN 1 t 1 t 1 1

featu_rt_es * ol [¥ ] . 3 1 5 6
Position
embedding | | | | | |
Features F

* = Learnable ‘ ‘ | ‘ ‘ ‘
class
embedding

Resnet 18

T | R |
§ :§ ET? :‘i? ‘iﬁf %ﬁ
T m

Input: m frames sampled from a tracklet.
Output: Jersey number probability of first, second digits and
overall holistic number.

Loss: Multi-task cross-entropy loss[3] with learned weights[4].

Weakly supervised training

1. Generate weak/approximate labels for jersey number
presence using a network trained to infer jersey number
from static images.

2. Train the transformer network by sampling tracklet frames
where jersey number is visible.

Incorporating player shifts

Given a player shifts database,
STEP1: Use an OCR to read game time

STEP2: Use game times to extract players
present on ice during a game clip from the database

STEP3: Create shift vectors encoding shift information from
STEP2 and multiply with final logits.

Dataset

84 clips/sequences
Trainval:71, Test:13

Game wise split made
Tracklets:
Training:2829 Validation:176 Test:505

Results

Ice hockey player identification via transformers and weakly supervised learning
Kanav Vats, Willlam McNally, Pascale Walters, David A. Clausi and John S. Zelek
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Example where incorporating player shifts resulted in correct prediction
Ground truth 2, using shifts (red) prediction:2, without shifts prediction: 12

Video number

Ours w/ shaft data

Ours w/ roster data

Ours w/o shaft/roster data

1 90.70% 95.35% 90.60%
2 91.43% 85.71% 74.29%
3 87.72% 87.72% 84.2%
4 80.00 % 76.0% 72.00%
J 83.33 % 83.33% 81.48%
6 90.00 % 90.0% 90.00%
7 85.07 % 80.60% 73.13%
8 93.75% 93.75% 91.6%
9 94.45% 93.18% 88.6%
10 93.02 % 88.37% 83.72%
11 82.22% 80.00% 71.11%
12 84.85% 84.85% 84.85%
13 86.11% 83.33% 80.56%
Mean 87.97 % 86.32% 82.02%

Incorporating shifts leads of a performance increase of almost 6%

o

600 800 10-'00 1200

Tracklet length (frames)

Training accuracy
5 &8 & & 8
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o T |
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Tracklet length distribution in dataset

|
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.I"r = Approximate frame labels
Mo approximate labels

0 1000 2000 3000 4000 5000 6000
lterations

== Approximate frame labels
Mo approximate labels

1000 2000 3000 4000 5000 6000
lterations

Faster convergence and better accuracy
using weakly supervised training

Network Accuracy

Proposed 83.37%
Temporal 83.17%
1d CNNJ[1]

Chan et 73.1%
al.[2]




MCGIH Interaction Classification with Key Actor Detection in Multi-Person Sports Videos

Farzaneh Askari', Rohit Ramaprasad?, James J. Clark?!, Martin D. Levine’
CENTRE or "McGil University, Montreal, QC, Canada, “Birla Institute of Technology and Science, Pilani, Rajasthan, India

INTELLIGENT
MACHINES

) cIm

Motivation:

0 Human actions and their interactions with each other and their
environment plays a significant role in video understanding, especially
sports analysis.

[0 Sports broadcast scenes are often crowded. Some of the actors
participate in the main event (i.e., key actors), and the rest are present
In the scene without being part of the actual event.

0 lce hockey broadcast videos include complex scenes due to frequent
occlusions, camera viewpoints, camera motion

[0 Penalties are complicated human interactions during a sports game
that significantly affect the dynamics and directions of the game.

Contribution:

0 We propose a CNN-RNN based model equipped with an attention
mechanism that recognizes penalties from ice hockey broadcast
videos while isolating the players involved in the event.

Dataset:

[0 Multi person penalty videos with pose and hockey stick annotations
0 Classes: Tripping (80), Slashing(76), No penalty (98)

An example of tripping class with pose and stick annotation

Method:

Pose 2 | Pose T

Pose 1
/ Frame 1

ResNet 152

ResNet 152 ResNet 152

\ » Attention

BILSTM  DiSSu— 3

Attention

Attention

\' LSTM

Linear

Attention mechanism

h] = BiLSTM;(h]_,, k! |, f:)

h$ = LSTM.(h§_y, hi , pa;)

N ?

pa: = > Softmax (MLP([p,,,;, nf h.;"_l])) e
i=1

5
loss = — Z yr. log yr
k=1

Results:
Model Accuracy (%)
Modell: only frames (no Att) 87.43
Model2: only pose (Att) 80.66
Model3: frames and pose fusion (Att) 93.93
Table 1. Penalty classification accuracy
Model Accuracy (%)
Model2: only pose (Att) 80.66
Model2 wo stick: only pose (Att) 74.86
Model3: frames and pose fusion (Att) 93.93
Model3 wo stick: frames and pose fusion (Att) 90.46

Table 2. The effect of stick keypoints on penalty classification
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Introduction

Our goal: to create a prediction model that can be used for
some analyses or applications.

For that goal, we combine geometric (left) and visual (right)

Yutaro Honda 1

Alignment Process

Key technologies.
1. Using detected points by YOLO as well as trajectories.

Trajectories
. Tracked positions of 20 players cannot be projected precisely.

Detection points
. Accurate positions of each player but include errors such as,

1. Miss detections. 2. Unnecessary detections.

2. Correction of YOLO errors using ICP + Hungarian Alg.

1. ICP between trajectory and detections.

Miss detected players may be identified.
We call them pseudo detection points.

2. Hungarian matching to filter points.

Red points w/o circle

. Pseudo detection points

Blue points w/o circle

: Unnecessary detection points

3. CPD was used for final alignment.
We obtained only 20 players tracked
positions in image coordinates system.

1 The University of Tokyo

Pass Receiver Prediction in Soccer using Video and Players’ Trajectories
Rel Kawakami 2 Ryota Yoshihashi 2

Kenta Kato 3
2 Tokyo Institute of Technology

Method
Combining three basic methods: SDCNN, LSTM, Transformer

» Input: Players’ video frames & trajectories, ball trajectory (as context info)
» Output: Possibilities for receiving a next pass of each player.

The cropped player video is used for two reasons:

1. To use the trajectory and the video simultaneously.
2. To prevent loss of visual information.

The cropped images. — The movement of the body.
The trajectories. — The spatial movement on the field.

Each Player
[ |
‘ Cropped 3D l
Image Resn |
- = Prediction
Trajectory
INA Transformer
: ’ Encoder
Ball Trajectory &6 | | & r--~-=========-=- 3
all Trajectory . @D : Pass Sender :
Trajectory @@ : Potential Receiver (Teammates)
A ' @D : Opponent Player
'O Ball
21 tokens : $ : Summantion
(20 players + Ball) e h e o oottt e teea J

Ball movement is considered as
a unigue context information.

The transformer takes into account the interaction
between players through an attention mechanism

Experiment

Predicting a receiver out of 9 teammates (excluded goad keeper).

» Rule based: Treating the closest teammate as the receiver.
» CNN: Simple CNN that considers the players’ position just before the pass.

Takeshi Naemura 1
3 Data Stadium Inc.

Top-1 Top-3 Top-5
Rule based 30.84 68.13 82.82
CNN 38.84 77.78 91.31
Our (trajectory) 48.48 84.27 94.80
Ours (trajectory + RGB) 61.10 91.52 97.47

Possible Application
Detecting key timing from probability change.

The change of players’ decision appeared as probability change.

What happens in these scenes?
(Orange stars indicate sender)

——— Probability change

Probability
o o
N

|

o

~

e

N
S\H\H\HlH\H\H\H\H\H
IO N R WNNNN R
@ © muN o W!m
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time from just before pass

Probahility change
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6
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o o o =
S o o0 o

STTRRTRRES

time from just before pass

Searching high-level pass scenes as prediction errors.

Many of prediction errors are as follows: headings, side changes, long passes,
and plays where even the kicker does not have full control of the ball.

Some errors are high-level pass scenes: it decelves our prediction model.

High-skilled through pass.
Conclusion
» Considering visual information directly improved the prediction accuracy.
» \We developed a pipeline that aligns player trajectories and video frames.
» \We presented possible applications using our prediction model.
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RECOGNITION OF FREELY SELECTED KEYPOINTS ON HUMAN LIMBS

INTRODUCTION

* \ideo analysis Is popular for performance evaluation and improvement of athletes’
capabilities based on the results of the analysis

* For individual sports, the location of keypoints is of main interest - their detection can be
automated by human pose estimation models

* Annotations are expensive, only necessary keypoints for the specific task are annotated

* More keypoints open possibilities for new and/or extended types of analyses, but are too
time consuming to annotate

® Qur approach introduces a method to estimate arbitrary keypoints on human limbs
without any additional keypoint annotations

KEYPOINT GENERATION

Random keypoints are generated using segmentation masks, the masks
can be created using detectron2 [1] if the dataset does not contain any:

1. A point bp (green) is randomly sampled on the line (= projection line)

between two fixed keypoints b,, b]- (yellow) enclosing a body part.

2. A line orthogonal to the projection line is created and the boundary

points ¢{,c, (blue) of the body part are determined as the
intersection of that line and the boundary of the segmentation mask.

3. The random point b, (red) is generated by randomly sampling a point

on the line segment between the boundary points, while points on
both sides are equally probable.

KEYPOINT REPRESENTATION

1. Representation as Keypoint and Thickness Vectors

o Let n be the number of keypoints in a dataset and p;, denote the distance from b, to b,
divided by the distance from b, to bj (= percentage of the projection line). Then the

keypoint vector ke R"is designed as

1_pba [ =1
vlk = < Db, [ =9 (=1, ....n
0, [ £ 1Nl F# 7

e Let ¢ denote the intersection point that is closer to b,. Let p, be the distance from b, to ¢

divided by the distance from bp to ¢ (= percentage of thickness). Then, the thickness
3

vector v € R” is designed as
T

ot (pe, 1 —pe, 0)7, by closer to ¢y
(0, 1 — pt,pt)T, b; closer to co

2. Representation as Norm Pose Point

* All keypoints are represented in normalized x- and y-coordinates
of the following norm pose:

MODEL ARCHITECTURE
Ml K

Feature Patch
Visual Token
Keypoint Vector
Keypoint Token

N
N
N
=
©)

Positional Encoding

Random Sampling T
and Permutation

EE .= [ ] .A'" [ ]
A N

Random Sampling
[ and Permutation

Linear Projection Linear Projection Linear Projection
Feature
- Maps |
‘. Keypoint Vectors Thickness Vectors Norm Pose Coordinates

e Basis: TokenPose-Base [2] with an HRNet-w32 [3] as a feature extractor

e Keypoint and thickness vectors are transformed to keypoint tokens via a linear

transformation just like feature patches and visual tokens
* Norm pose coordinates are transformed to keypoint tokens via a multi layer perceptron

THICKNESS METRICS

e Problem: Models predicting only the projection points bp instead of b,

achieve high PCK and OKS scores, although the model does not learn
the semantic of the body part shapes —» new metrics are necessary

o Let bto be the desired ground truth keypoint, blg) the corresponding
projection point, c? the intersection point on the other side of blg and

Cg the intersection point on the same side, w.l.0.g. (see figure)
0 0
‘ ‘bt - bp ‘ ‘2

e [he ground truth thickness Is [y = —————
T

e |f the model predicts a point btz on the same side of the projection line as bto, the predicted

2 2
Hbt _prQ

W and the thickness error ¢, = | lo— 1y |
R D)

thickness is 7, =

1 1
Hbt _prQ

e For points btl on the opposite side, the thickness error is ¢; = W + 1
(1 = Opll

* Used metrics: Mean Thickness Error (MTE) and Percentage of Correct Thickness
(PCT), defined analogous to PCK

EXPERIMENTS

® DensePose [1] split of COCO [4] dataset:
- 39,210 persons for training, 2,243 for validation and 7,297 for testing - 17 keypoints

- Correction of ~3,500 segmentation masks (left-right errors, published on our website)
* [riple and long jump dataset:

- 4,101 images for training, 464 for validation and 1,461 for testing - 20 keypoints

- Segmentation masks from detectron2 [1], no need for manual annotations

DensePose - COCO

Model AP Avg PCK | Full PCK MTE PCT Avg PCK | Full PCK MTE PCT

Triple & Long Jump

TokenPose 34.6 84 .1 91.3

Heypoln & Thickness| 840 | 84.2 | 872 | 255 | 681 | 909 | 93.6 | 162 | 81.4

Vectors

Norm Pose Linear /8.5 80.5 83.1 33.0 56.4 90.3 93.5 17.0 79.0

Norm Pose
4-Layer MLP 831 | 837 | 871 | 257 | 669 | 909 | 936 | 168 | 79.8
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1] lasonas Kokkinos, Riza Alp Guler, Natalia Neverova. Densepose: Dense human pose estimation in the wild. 2018.
2] Yanjie Li, Shoukui Zhang, Zhicheng Wang, Sen Yang, Wankou Yang, Shu-Tao Xia, and Erjin Zhou. Tokenpose: Learning keypoint tokens for human pose estimation. arXiv preprint arXiv:2104.03516, 2021.

3] Jingdong Wang, Ke Sun, Tianheng Cheng, Borui Jiang, Chaorui Deng, Yang Zhao, Dong Liu, Yadong Mu, Mingkui Tan, Xinggang Wang, et al. Deep high-resolution representation learning for visual recognition. IEEE
transactions on pattern analysis and machine intelligence, 2020.

[4] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr Dolla r, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In ECCV, pages 740-755. Springer, 2014.
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Supervised training + fine-tuning

* We propose a novel semi-supervised learning
method for leveraging unlabeled data by generating \

pseudo labels with a teacher-student approach. Labeled dataset Confidence scores Loss
0.9 0.70.8 0.30.70.80.9 0.8 Parametrization

Student = Evaluation

Supervised training |

* We Introduce three loss parametrizations to
iIntroduce doubt in the pseudo labels based on their
confidence scores.

Motivations

* It Is expensive In time or money to annotate large Unlabeled dataset , et Ut
erative updaate
amounts of data. | e e e e e e e e m e m e mmm )

« Unlabeled data are collected but often left unused. Loss parametrizations Experimental Results

| Quantitative results
- Loss parametrization 1 Single Metric: mAP

Supervisedjtraining

Inference
Teacher e

> Let's use them to improve our models!

; separation Validation set Test set
Method 19 5% 10% 100% 100%
Methodology g | |Baskgrem between the — 1 | = : : O ° O
: : Teacher - - 18.1 31.9 39.5 O2.7 51.0
7 -— > objects and the Param. 1 | - | 0.99 || 25.87 386 44.3 53.7 -
| Ry - Confidence score background Param. 2 | 0.9 | 0.99 26.0 38.7 44.3 53.8 —
e Step 1: Training the teacher: We train a teacher - Param. 3 | 0.9 | 1 26.2 389 43.7 53.8 52.3
. . : T
model with the labeled data in a supervised way. ; o
o All parametrizations improve the performance.
: E - o« Param. 3 leads to the best performance.
» Step 2: Generating pseudo labels: We use the 1 _Loss parametrization 2 Doubt for P
trained teacher to generate pseudo labels on the 5| E 5 unsure | | Effect of fine-tuning Metric: AP
6 o . . .
unlabeled data. S| g i oo predictions of Method 1% 5% 10% 100%
§ 8 | Copfdenes seoie the teacher Teacher 18.1 31.9 39.5 52.7
. Step 3- Training the student: \We train a student = : . Param. 1 | 22.67 —25.8 36.0 — 38.6 42.3 — 44.3  52.6 — 53.7
. P .2 23.1 20.1 36.6 38.7 43.0 44 .3 02.0 53.8
model with the labeled and pseudo-labeled data. T Th Param. 3 | 23.0 - 26.2 361 — 38.0 41.9 s 43.7 527 — 53.8
We introduce doubt for unsure predictions of the
teacher by parametrizing the loss and we o Fine-tuning on the labeled data further improves the
fine-tune the student model with the labeled data. ' © Loss parametrization 3 Progressive performances for each parametrization.
doubt for

unsure
predictions of
the teacher

Qualitative results

T

e Step 4: lIterating with a new_ teacher: The
fine-tuned student becomes the new teacher and it

IS used to generate new pseudo labels.

Loss weight —
Background

Confidence score

Teacher ' Fine-tuned student 1 Fine-tuned student 2
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Motivation

X Broadcast videos do not show the entire pitch
X No large public dataset for tracking with a full pitch view

Contributions

» A new soccer tracking dataset called SoccerTrack (50,000+ frames)!
v' Wide-view (fish-eye camera in 8K)
v Top-view (drone camera in 8K)
v" GNSS location data
v Bounding boxes w/ ID
» The codebase for camera calibration, tracking (players and ball) and
other pre/post-processing tools.

Atom Scott™+2, |. Uchida™2, M. Onishi?, Y. Kameda’, K. Fukui' and K. Fuijii3
'University of Tsukuba, “National Institute of Advanced Industrial Science and Technology, SNagoya University *Indicates equal contribution
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Collection Method

Participants

v’ College-level athletes
v University of Tsukuba, Japan
v' Ethics committee approved

Semi-Automatic

1. Collect video and GNSS data

2. Perform object detection on video

3. Project bounding boxes and GNSS points to pitch
coordinates via homography transform.

4. Assign IDs to bounding boxes w/ bipartite matching

Dataset Overview

Wide-view camera Top-view camera GNSS

Device

Resolution

FPS

Player tracking
Ball tracking
Bounding box
Location data

Player ID

Z CAM E2-F8 DIJI Mavic 3 STATSPORTS APEX 10 Hz
8 K 4 K Abs. err. in 20-m run:
(7,680 x 4,320 pixels) (3,840 x 2,160 pixels) 0.22 £ 0.20 m [4]
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A Dataset and Tracking Algorithm for Soccer with Fish-eye and Drone Videos

Annotation Accuracy [mean * std]

Tracking Performance (Ave.)

Top-view Camera

Top-view Camera

KP Projection Error

Discrepancy w/ GNSS
Wide-view Camera

KP Projection Error

Discrepancy w/ Top-view 2.77 +4.47 m

» Both top and wide camera views can be used for tracking
» Annotation evaluations showed reasonable accuracy
» The tracking algorithm can be improved

0.06 £0.03 m MOTA Score 50.5%

2.76 £2.86 m ID Switches 5
Wide-view Camera

0.56£0.42m MOTA Score 14.2%
ID Switches 19

Comparison with other Tracking Datasets

Top-view Camera Tracking Pipeline

Wide-view Camera Tracking Pipeline

Drone video

Input Video —>

Preprocessing

Field Registration

4

Detection using YOLO v5 Output Tracking

4

Multi Object Tracking
Kalman OSNet

Filter

Feature Extraction

Appearance

|
' | Motion
E Descriptor

Descriptor

L
Assignment l

Solve
Linear Sum Assignment

| 8K video

—

Input Video

Preprocessing

Calibration

4

Detection using YOLO v5

L
Assignment l

4

Multi Object Tracking

Kalman
Filter

..

Feature Extraction |

Motion
Descriptor

E'Appearance‘ :
’ Descriptor ‘ |

Solve
Linear Sum Assignment

—

Output Tracking

Dataset Camera Wide-view Top-view GNSS/LPS Location data Bounding box Tracking code
D’Orazio et al. [11] v X X X v X X
Pettersen et al. [32] v Panorama X LPS v X X
Pappalardo et al. [31] X X X X v X X
GFootball [23] v — — — v X X
SoccerNet vl [14] v X X X X X X
SoccerNet v2 [9] v X X X v v v
SoccerTrack (ours) v Fish-eye Drone GNSS v v v

Public Release Schedule

Documentation / Data Downloads

1| AtomSeott

SoccerTrack

A Dataset and Tracking Algorithm for Soccer with Fish-eye and Drone

Date Content

06/20 10 minutes of top/wide view
(30 secs x 20 clips)

08/01 20 minutes of top/wide view
(30 secs x 40 clips)

09/01 30 minutes of top/wide view

(30 secs x 60 clips)

cccccccccccccc

Find our webpage at https.//qithub.com/AtomScott/Soccerirack

...0r just google “SoccerTrack”!


https://github.com/AtomScott/SoccerTrack

» Introduction

Sports Field Registration is to estimate homography transformation using field-
features between 2D field model and image. A wide variety of sports
applications requires a robust sports field registration such as virtual
advertising and true-view replay.

Real-world field images usually present a uniform and textureless appearance,
extracting sparse field-features due to camera zoom-in or occlusions caused
by the players. Those cases make the homography estimation a non-trivial and
challenging task. Inspired by keypoints detection method, which may suffer the
missing and misalignment problems due to uniform appearance, we use
similar idea to tackle this problem differently. Below is missing and
misalignment case between the state-of-the-art method and ours.

FIEA TV

Contributions

» We combine instance segmentation with dynamic filter learning to detect a
grid of uniformly distributed keypoints over the entire field image.

» We introduce a new soccer dataset, called TS-WorldCup, with detailed field
markings on 3812 time-sequence field images.

Sports Field Registration via Keypoints-aware Label Condition

Yen-Jui Chu' Jheng-Wei Su’ Kai-Wen Hsiao? Chi-Yu Lien' Shu-Ho Fan? Min-Chun Hu' Ruen-Rone Lee? Chih-Yuan Yao® Hung-Kuo Chu’
'National Tsing Hua University “Delta Research Center °National Taiwan University of Science and Technology

» Model Architecture

Standard Encoder-decoder

We adopt a encoder-decoder structure to extract the feature map of input field
Image.

noints-aware Label Condition
» Dynamic Filter Generation

The parameters of convolution filters are generated dynamically by
keypoints-specific controller and conditioned on both the field image and the
assigned keypoints.

» Dynamic Head

Leverage three convolution layers based on learned convolution filters and
employ soft aggregation for merging heatmaps to get the final result.

Standard Encoder-decoder Keypoints-aware Label Condition

Homography
Estimation (P)

One-hot Vector 0 0 1 0 0

L L]
- -
- - L
& s 8 »
L B L
-
L -
- -
L]
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» Evaluation

I'S-WorldCup Dataset

We create a new soccer dataset with detailed field markings on 3812 field
iImages from 43 videos of Soccer World Cup 2014 and 2018. It is beneficial for
temporal evaluation due to contains time-sequence frames.

Quantitative Results

Our method outperforms state-of-the-arts on our collected TS-WorldCup
dataset. The symbol * denotes the methods that are finetuned on the TS-
WorldCup training set.

® - merge

Controller (G)

P - concatenate

We adopt three loss functions to train our model.
» Binary Dice Loss

It is proven helpful for addressing the data imbalance problem between
foreground and background.

» Binary Cross Entropy Loss
It is commonly used in the binary classification problems.
» Weighted Cross Entropy Loss
It tackles the data imbalance problem by assigning weight to each class.

Method 10U, 101e(%) 1T [0U5r(%) T Proj. (meter) | Re — Proj. !

mean | median | mean | median | mean | median | mean | median

Chen et al 800 | 922 | 968 | 976 | 065 | 047 | 0020 | 0017 |
Nie et al. 90.1 92.8 96.6 97.4 0.57 0.51 0.015 0.012
Ours 93.2 94.3 97.6 97.7 0.45 0.41 0.012 0.011
Chenetal. * 90.7 94 .1 96.8 97.4 0.54 0.38 0.016 0.013
Nie et al. * 92.5 94.2 97.4 97.8 0.43 0.38 0.011 0.010
Ours * 94.8 95.4 98.1 98.2 0.36 0.33 0.009 0.008

» Conclusion

Qualitative Results

------

» We estimate a robust homography based on a grid of uniformly distributed

keypoints and instance segmentation with dynamic filter learning.

» We compile a new soccer dataset, called TS-WorldCup, by annotating time-

sequence field-frames.




